

РП: S0040-4039(97)10195-2

Conformational Study of a Rigid-Structured Octathiabiscavitand from [2 + 2] Coupling of Caps and Bridging Units

Jungbai Lee,* Kihang Choi * and Kyungsoo Paek**

*Department of Chemistry, Soong Sil University, Seoul 156-743, Korea * Chemistry Division, Hanhyo Institute of Technology, Taejon 305-390, Korea

Abstract: An octathiacavitand was stereoselectively obtained in good yield by [2 + 2] coupling reaction between a tetrakis(thiomethyl)cavitand and 1,2,4,5-tetrakis(bromomethyl)benzene. Its NOESY spectrum showed that its cavity was divided into two small ones by $\pi - \pi$ stacking of two bridging benzene units. © 1997 Elsevier Science Ltd.

Host molecules having a defined cavity for selective and stable binding of a guest (cavitands) have been important targets in molecular recognition chemistry.¹ The analyses of cavitand - guest interactions have been focused on highly preorganized cavitands with one² or two³ binding sites, which showed interesting binding behaviors with respect to the complementary guests. Cavitands based on resorcin[4]arene used to have a organized tridimensional cavity which are rigid and complementary to potential guests,⁴ but the binding energies are relatively low unless the cavitands have a constrictive binding property enough to be a hemicarcerand⁵ and/or additional noncovalent interactions such as hydrogen bonding, charge-dipole, chargecharge or π -stacking interactions.⁶

Based on these points, new tridimensional hosts which would show a constrictive binding and/or an additional π -stacking interactions were designed and the conformation of a host was determined by NOESY spectrum and VT 'H-NMR experiment.

Compound 1 was easily obtained (90%) from an resorcin[4]arene synthesized from 2-methylresorcinol and butanal by the known procedure.⁷ It was efficiently functionalized to tetrabromide 2 by NBS bromination $(90\%)^8$ and the subsequent treatment of tetrabromide 2 with thiourea followed by basic hydrolysis gave tetrathiol 3 in good yield (92%).⁹

Tetrathiol 3 was treated with 1,2-bis(bromomethyl)benzene in DMF/K₂CO₃ mixture to give a cavitand 4^{10} in 43%. Due to the fast intramolecular bridging reaction various attempts gave only this [1 (cap) + 2 (bridge)] cavitand 4 instead of a desired [2 + 4] host which would show a constrictive binding property around its tridimensional cavity. Cavitand 4 showed a high affinity for Ag^{*} by picrate extraction experiment.

Tetrathiol 3 was also treated with 1,2,4,5-tetrakis(bromomethyl)benzene in DMA/Cs₂CO₃ mixture using high dilution condition to give a [2 + 2] host. CPK molecular model examination shows both of [2 + 2] hosts 5 and 6 are possible together with a [1 + 1] cavitand. [1 + 1] cavitand seems unlikely due to a serious steric congestion, but both of hosts 5 and 6 seem not to have any notable steric hindrance. Host 5 and 6 have four 15- and 16-membered cycles, respectively, between caps and bridges, which implies host 6 should be less sterically hindered than host 5. Also each of these could exist as conformers A (open conformer) and/or B (closed conformer). Conformer A has a large cavity enough to accomodate a large guest such as p-xylene, but in conformer B (a potential biscavitand) this cavity is divided into two small ones separated by the stacked two bridging units (Figure 1 for 6). Two conformers could isomerize one into another by controlled temperature or solvent.

Figure 1. Space-Filling Models of Conformers 6A and 6B and the Stereoview of 6B (Energy Minimized Structures Using MM+ Force-field by HyperChem[®]).

Only one isomer'' was isolated in about ~15 % yield. 'H NMR study showed it does not change its conformation in various conditions (300 MHz 'H NMR, -40 °C ~ 150 °C in CD_2Cl_2 , $CDCl_3$, DMSO-d₆ or C_6D_5 -NO₂). Figure 2 shows the partial NOESY spectrum of this product from 3.0 to 8.0 ppm and the hydrogen labeling. As depicted in Figure 2 aryl hydrogens of bridging benzene unit is labeled as H_a and

dioxymethylene within 16-membered ring labeled as H_i and the other oxymethylenes as H_o . Benzyl hydrogens from bridging benzene units are labeled as H_b and those from cap as H_c . For each methylene, hydrogens facing inward were labeled with the second subscript "i" and those facing outward were labeled with the second subscript "o".

Figure 2. The 300-MHz NOESY Spectrum (3.0 ~ 8.0 ppm) of Host 6 Measured in CDCl₃ Using 200 ms Mixing Time and 2.0 s of Pulse Delay and the hydrogen labeling.

The NOEs within this host were summarized in Table 1 together with the average distances between the corresponding hydrogens of conformer 6A and 6B, which were measured from their energy-minimized structures (MM+ force field using HyperChem[®]). At first the significant NOE between H_a and dioxymethylene hydrogen H_{ii} (6.6 %) rules out the possibility of conformers 5A and 5B (The calculated minimized energy of conformer 5 in the gas phase is about 150 kcal mol⁻¹ higher than that of 6). The large NOE between H_a and H_{ii} compared to that between H_a and H_{io} (6.6 vs. 0.0 %) implies that H_a is much closer to H_{ii}. Even the calculated distances between H_a and H_{ii} of 6A and 6B (1.90 vs. 2.22 Å) or H_a and H_{io} (2.34 vs. 3.93 Å) appeared to be closer in 6A, the large differences of NOEs (6.6 vs. 0.0 %) matches better to conformer 6B. Also the distances between H_{bi} and H_{ci} for 6A and 6B and its NOE (3.33 vs. 2.81 Å, 3.2 %) or those between H_{bi} and H_{oo} (8.20 vs. 3.75 Å, 1.4 %) match much better to conformer 6B than to conformer 6A. Especially NOE between H_{bi} and H_{oi} (8.1 %) exclusively support conformer 6B (2.75 Å), because for conformer 6B. Conformer 6B is the first preorganized biscavitand whose cavity is divided into two by the intra $\pi - \pi$ stacking.

It is presumable that the solvent templation effect for the formation of conformer 6A is very weak and the intermediate leading to the empty 6A in N,N-dimethylacetamide would be a high energy state. So the self-templation by the weak π - π interaction, which collapses the cavity to give a lower energy state, would play a crucial role for the formation of 6B. The conformational stability of 6B arises from the high rotational barrier through CH₂-S-CH₂bond due to the large steric hindrance of sulfur atom and the π - π attraction of

two benzene units which are sustaining the rigid four pillared system. The calculated average distance between two bridging benzene units of **6B** is about 3.88 Å which is close to van der Waals distance (3.45 Å) of graphite.

The binding study of biscavitand **6B** for potential small guests such as O_2 , N_2 , Ar, NH_4^+ , CH_4^{12} or transition metals and the resolution of its crystal structure are under investigation.

		H _a -H _{ii}	H _a -H _{io}	H _{bi} -H _{ci}	H _{bi} -H _{oo}	H _{bi} - H _{oi}
Average	6A	1.90	2.34	3.33	6.20	4.12
Distance (Å) ^a	6 B	2.22	3.93	2.81	3.75	2.75
NOE [▶] (%)		6.6	0.0	3.2	1.4	8.1

Table 1. The Average Distances between Two Hydrogens in 6A and 6B and the Corresponding NOEs.

*Average Distances were measured from the Energy-Minimized Conformation (MM+ force field) of 6A and 6B. * NOEs are from the volume integration of cross peaks in the NOESY spectrum.

Acknowledgement: The financial support from the Korean Science and Engineering Foundation (Project No. 96-0501-04-01-3) and Soong Sil University (1996) is gratefully acknowledged.

References

- Cram, D. J.; Cram J. M.; In*Container Molecules and Their Guests*; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, U.K., 1994; Chapt. 5.
- 2. Cram, D. J.; Stewart, K. D.; Goldberg, I.; Trueblood, K. N. J. Am. Chem. Soc. 1985, 107, 2574.
- 3. Tucker, J. A.; Knobler, C. B.; Trueblood, K. N.; Cram, D. J. J. Am. Chem. Soc. 1989, 111, 3688.
- 4. Cram, D. J.; Tunstad, L. M.; Knobler, C. B. J. Org. Chem. 1992, 57, 528.
- 5. Cram, D. J.; Blanda, M. T.; Paek, K.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7765.
- (a) Schwartz, E. B.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1992, 114, 10775. (b) Cram, D. J.; Choi, H.-J.; Bryant, J. A.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7748.
- Tunstad, L. M. ; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1989, 54, 1305.
- 8. (a) Kim, K. : Paek, K. Bull. Korean Chem. Soc. 1993, 14, 658. (b) Sorrel, T. N.; Pigge, F. C. J. Org. Chem. 1993, 58, 784.
- 9. Bryant, J. A.: Blanda, M. T.: Vincenti, M.: Cram, D. J. J. Am. Chem. Soc. 113, 2167 (1991).
- Selected data for 4: mp >296 °C (dec.); ¹H NMR (300MHz, CDCl₃) & 1.00 (m, 12H, CH₃), 1.35 (m, 8H, CH₂CH₂CH₃),
 2.20 (m, 8H, CH₂CH₂CH₃), 2.85 (q, 8H, SCH₂ from xylyl), 3.75 (q, 8H, SCH₂), 4.25 (d, J = 7.4 Hz, 2H, OCH₂O), 4.65, (m, 4H, OCH₂O), 4.80 (t, 2H, CH), 4.90 (t, 2H, CH), 6.18 (d, J = 7.1 Hz, 2H, OCH₂O), 7.10 (s, 4H, Ar-H), 7.18 (m, 4H, xylyl-H), 7.50 (m, 4H, xylyl-H); MS (FAB+) m/e 1094 (M^{*}, 13%)
- Selected data for 6B: mp >232 °C (dec.); ¹H NMR (300MHz, CDCl₃) *b* 0.98 (m, 24H, CH₃), 1.30 (m, 16H,CH₂CH₂CH₂CH₃),
 Selected data for 6B: mp >232 °C (dec.); ¹H NMR (300MHz, CDCl₃) *b* 0.98 (m, 24H, CH₃), 1.30 (m, 16H,CH₂CH₂CH₂CH₃),
 (m, 16H, CH₂CH₂CH₃), 3.30 (d, *J* = 18.0 Hz, 8H, H_{bi}), 3.60 (d, *J* = 14.7 Hz, 8H, H_{ci}), 3.80 (d, *J* = 18.0 Hz, 8H, H_{bo}),
 (m, 16H, CH₂CH₂CH₃), 3.30 (d, *J* = 18.0 Hz, 8H, H_{bi}), 3.60 (d, *J* = 14.7 Hz, 8H, H_{ci}), 3.80 (d, *J* = 18.0 Hz, 8H, H_{bo}),
 (m, 16H, CH₂CH₂CH₃), 4.30 (d, *J* = 5.4 Hz, 4H, H_{oi}), 4.80 (t, 8H, CH), 5.10 (d, *J* = 8.1 Hz, 4H, H_{ii}), 6.20 (d, *J* = 8.1 Hz, 4H, H_{ii}), 6.30 (d, *J* = 5.4 Hz, H₂, 4H, H₁, 7.70 (s, 4H, ArH_a); MS (FAB+) m/z 2026 (M*, 9%).
- 12. Cram, D. J.; Tanner, M. E.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 7717.

(Received in Japan 11 July 1997; revised 9 September 1997; accepted 18 September 1997)